Least-squares Finite Element Methods for Quantum Chromodynamics

نویسندگان

  • J. BRANNICK
  • C. KETELSEN
چکیده

A significant amount of the computational time in large Monte Carlo simulations of lattice quantum chromodynamics (QCD) is spent inverting the discrete Dirac operator. Unfortunately, traditional covariant finite difference discretizations of the Dirac operator present serious challenges for standard iterative methods. For interesting physical parameters, the discretized operator is large and ill-conditioned, and has random coefficients. More recently, adaptive algebraic multigrid (AMG) methods have been shown to be effective preconditioners for Wilson’s discretization [1] [2] of the Dirac equation. This paper presents an alternate discretization of the Dirac operator based on least-squares finite elements. The discretization is systematically developed and physical properties of the resulting matrix system are discussed. Finally, numerical experiments are presented that demonstrate the effectiveness of adaptive smoothed aggregation (αSA ) multigrid as a preconditioner for the discrete field equations resulting from applying the proposed least-squares FE formulation to a simplified test problem, the 2d Schwinger model of quantum electrodynamics (QED).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Least-Squares and the Weak-Form Galerkin Finite Element Models for the Nonlinear Analysis of Timoshenko Beams

In this paper, a comparison of weak-form Galerkin and least-squares finite element models of Timoshenko beam theory with the von Kármán strains is presented. Computational characteristics of the two models and the influence of the polynomial orders used on the relative accuracies of the two models are discussed. The degree of approximation functions used varied from linear to the 5th order. In ...

متن کامل

Least-Squares Finite Element Methods for Quantum Electrodynamics

A significant amount of the computational time in large Monte Carlo simulations of lattice field theory is spent inverting the discrete Dirac operator. Unfortunately, traditional covariant finite difference discretizations of the Dirac operator present serious challenges for standard iterative methods. For interesting physical parameters, the discretized operator is large and ill-conditioned, a...

متن کامل

Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations

Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...

متن کامل

Least Squares Finite Element Methods for Viscous, Incompressible Flows

This paper is concerned with finite element methods of least-squares type for the approximate numerical solution of incompressible, viscous flow problems. Our main focus is on issues that are critical for the success of the finite element methods, such as decomposition of the Navier-Stokes equations into equivalent first-order systems, mathematical prerequisites for the optimality of the method...

متن کامل

Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection-diffusion problems

Some least-squares mixed finite element methods for convectiondiffusion problems, steady or nonstationary, are formulated, and convergence of these schemes is analyzed. The main results are that a new optimal a priori L2 error estimate of a least-squares mixed finite element method for a steady convection-diffusion problem is developed and that four fully-discrete leastsquares mixed finite elem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008